XX. NWA 856 (ver. 2003) Basalt 320 grams *Figure XX-1*: Photograph of NWA 856 (Djel Ibone) kindly provided by Bruno Fectay and Carine Bidaut illustrating thin fusion crust and interior basaltic texture (scale is 1 cm). #### Introduction Jambon *et al.* (2001, 2002) describe the discovery in March 2001 of another basaltic shergottite from Morocco. This sample was originally referred to as "Djel Ibone" and is officially known as NWA 856 (Russell *et al.* 2002). The original piece (~ 5 cm) had a thin black fusion fusion crust that was well preserved – see also figure 1 in Jambon *et al.* (2002). ### **Petrography** This meteorite is a fine-grained basalt (figure XX-1) with gray acicular pyroxene phenocrysts up to 12 mm long (Jambon *et al.* 2002). Augite and pigeonite form as separate crystals. Plagioclase (maskelynite) laths are interstitial as is trace merrillite, apatite, pyrrhotite, chromite, Fe-Ti oxides, silica and baddeleyite. Shock melt pockets are more abundant than in Shergotty or Zagami and this meteorite is highly fractured at all scales. ### **Mineralogical Mode** Pyroxene 68 vol. % Plagioclase 23 Phosphates 1 Oxides 2 Silica 1 Melt Pockets 2 Terrestrial calcite veins cross-cut this meteorite, but terrestrial weathering appears to be at a minimum because Cs, Ba, Sr and U are not elevated (Jambon *et al.* 2002). Photos can also be seen at http://www.jpl.nasa.gov/snc/nwa856.html #### **Mineral Chemistry** **Pyroxenes**: As in the Shergotty meteorite, augite and pigeonite are present in NWA 856 as separate phases, with no pyroxenes of intermediate composition (figure XX-2). Pyroxenes are zoned; pigeonite ranges from $\operatorname{En}_{59}\operatorname{Fs}_{29}\operatorname{Wo}_{12}$ to $\operatorname{En}_{26}\operatorname{Fs}_{59}\operatorname{Wo}_{15}$ and augite from $\operatorname{En}_{36}\operatorname{Fs}_{39}\operatorname{Wo}_{32}$ to $\operatorname{En}_{48}\operatorname{Fs}_{39}\operatorname{Wo}_{13}$. Figure XX-2: Pyroxene composition diagram for NWA 856 (data replotted from Jambon et al. 2002). **Maskelynite**: Plagioclase has been shocked to maskelynite $Ab_{48}Or_{2}An_{50}$. **Phosphates**: Both merrillite and Cl-apatite are present. *Stishovite*: Relative abundant and large euhedral crystals or thin square needles of stishovite have been observed by Raman spectroscopy (Jambon *et al.* 2002) in melt pockets of NWA 856. **Baddelyite**: Two minute baddelyite crystals are reported. *Amphibole*: Minute amphibole is reported by Jambon *et al.* (2002) located in melt inclusions in pyroxene cores. # **Whole-rock Composition** Table XX-1 gives the composition of NWA 856 as reported by Jambon *et al.* (2001, 2002). The REE pattern of NWA 856 is similar to those of Shergotty and Zagami (figure XX-3). The Ga/Al ratio (4.1 x 10⁻⁴) indicates that this rock is Martian. Weathering does not appear to have left a significant chemical signature in this desert meteorite (Jambon *et al.* 2002). ### **Other Isotopes** Jambon *et al.* (2002) reported oxygen isotopes with $\Delta^{17}O = \sim 0.47$ ‰. Figure XX-3: Normalized rare earth element diagram for NWA 856 compared with that of Shergotty (data from Jambon et al. 2002 and Lodders 2000). ### **Processing** Figure XX-4 shows details of a slab of NWA 856. Figure XX-4: Close up of slab of Djel Ibone illustrating basaltic texture (whose fingers?). Table XX-1: Chemical composition of NWA 856. | reference
weight | Jambon 2001 | Jambon 2002
500 mg. | | Jambon 2002 | | |---|--|---|---|--|--| | SiO2
TiO2
Al2O3
FeO
MnO
CaO
MgO
Na2O
K2O
P2O5
sum | 0.81
6.83
17.8
0.49
10.2
9.51
1.28
0.13 | 0.81
6.83
17.81
0.49
10.24
9.51
1.28
0.13 | (a)
(a)
(a)
(a)
(a)
(a)
(a) | 19.97
0.54 | (c)
(c) | | Li ppm
Be
F
S | | 4.06
0.355 | (b) | | | | CI
Sc
V
Cr
Co
Ni
Cu
Zn
Ga
Ge | 77 | 55.7
295
3361
36.3
77 | (b)
(b)
(b)
(b)
(b)
(b)
(b) | 54.1
3942
43
85 | (c)
(c)
(c) | | | | 59.1
14.66 | | 66 | (c) | | As
Se | | | | 0.18 | (c) | | Br
Rb
Sr
Y
Zr
Nb | | 6.24
48.7
18.81
62.8
3.37 | (b)
(b)
(b) | 2.64
8.2
56 | (c)
(c)
(c) | | Pd ppb Ag ppb Sb ppb Cs ppm Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er | 2.16
3.88
1.5
0.58 | 0.43
41.3
2.16
5.49
0.786
3.88
1.5
0.582
2.51
0.474
3.12
0.677
1.87 | (b) | < 50
14
0.41
46
2.34
6.1
3.9
1.68
0.62
0.48 | (c)
(c)
(c)
(c)
(c)
(c)
(c)
(c) | | Tm
Yb
Lu
Hf
Ta
W ppb
Au ppb | 1.64 | 1.64
0.251
1.55
0.16
430 | (b)
(b)
(b)
(b) | 1.76
2.01
0.23
520
4 | (c)
(c)
(c)
(c)
(c) | | Th ppm
U ppm | 0.4 | 0.398
0.096 | (b) | 0.442
0.092 | (c) | technique: a) ICP/AES, b) ICP/MS, c) INAA